(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr0(x), y, y)
cond2(false, x, y) → cond1(gr0(x), p(x), y)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
gr0(0) → false
gr0(s(x)) → true
p(0) → 0
p(s(x)) → x
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
gr(s(x), s(y)) →+ gr(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr0(x), y, y)
cond2(false, x, y) → cond1(gr0(x), p(x), y)
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
gr0(0') → false
gr0(s(x)) → true
p(0') → 0'
p(s(x)) → x
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
cond1(true, x, y) → cond2(gr(x, y), x, y)
cond2(true, x, y) → cond1(gr0(x), y, y)
cond2(false, x, y) → cond1(gr0(x), p(x), y)
gr(0', x) → false
gr(s(x), 0') → true
gr(s(x), s(y)) → gr(x, y)
gr0(0') → false
gr0(s(x)) → true
p(0') → 0'
p(s(x)) → x
Types:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
gr0 :: 0':s → true:false
false :: true:false
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_cond1:cond21_3 :: cond1:cond2
hole_true:false2_3 :: true:false
hole_0':s3_3 :: 0':s
gen_0':s4_3 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
cond1,
cond2,
grThey will be analysed ascendingly in the following order:
cond1 = cond2
gr < cond1
(8) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr0(
x),
y,
y)
cond2(
false,
x,
y) →
cond1(
gr0(
x),
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
gr0(
0') →
falsegr0(
s(
x)) →
truep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
gr0 :: 0':s → true:false
false :: true:false
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_cond1:cond21_3 :: cond1:cond2
hole_true:false2_3 :: true:false
hole_0':s3_3 :: 0':s
gen_0':s4_3 :: Nat → 0':s
Generator Equations:
gen_0':s4_3(0) ⇔ 0'
gen_0':s4_3(+(x, 1)) ⇔ s(gen_0':s4_3(x))
The following defined symbols remain to be analysed:
gr, cond1, cond2
They will be analysed ascendingly in the following order:
cond1 = cond2
gr < cond1
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
gr(
gen_0':s4_3(
n6_3),
gen_0':s4_3(
n6_3)) →
false, rt ∈ Ω(1 + n6
3)
Induction Base:
gr(gen_0':s4_3(0), gen_0':s4_3(0)) →RΩ(1)
false
Induction Step:
gr(gen_0':s4_3(+(n6_3, 1)), gen_0':s4_3(+(n6_3, 1))) →RΩ(1)
gr(gen_0':s4_3(n6_3), gen_0':s4_3(n6_3)) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr0(
x),
y,
y)
cond2(
false,
x,
y) →
cond1(
gr0(
x),
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
gr0(
0') →
falsegr0(
s(
x)) →
truep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
gr0 :: 0':s → true:false
false :: true:false
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_cond1:cond21_3 :: cond1:cond2
hole_true:false2_3 :: true:false
hole_0':s3_3 :: 0':s
gen_0':s4_3 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_3(n6_3), gen_0':s4_3(n6_3)) → false, rt ∈ Ω(1 + n63)
Generator Equations:
gen_0':s4_3(0) ⇔ 0'
gen_0':s4_3(+(x, 1)) ⇔ s(gen_0':s4_3(x))
The following defined symbols remain to be analysed:
cond2, cond1
They will be analysed ascendingly in the following order:
cond1 = cond2
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond2.
(13) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr0(
x),
y,
y)
cond2(
false,
x,
y) →
cond1(
gr0(
x),
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
gr0(
0') →
falsegr0(
s(
x)) →
truep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
gr0 :: 0':s → true:false
false :: true:false
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_cond1:cond21_3 :: cond1:cond2
hole_true:false2_3 :: true:false
hole_0':s3_3 :: 0':s
gen_0':s4_3 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_3(n6_3), gen_0':s4_3(n6_3)) → false, rt ∈ Ω(1 + n63)
Generator Equations:
gen_0':s4_3(0) ⇔ 0'
gen_0':s4_3(+(x, 1)) ⇔ s(gen_0':s4_3(x))
The following defined symbols remain to be analysed:
cond1
They will be analysed ascendingly in the following order:
cond1 = cond2
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol cond1.
(15) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr0(
x),
y,
y)
cond2(
false,
x,
y) →
cond1(
gr0(
x),
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
gr0(
0') →
falsegr0(
s(
x)) →
truep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
gr0 :: 0':s → true:false
false :: true:false
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_cond1:cond21_3 :: cond1:cond2
hole_true:false2_3 :: true:false
hole_0':s3_3 :: 0':s
gen_0':s4_3 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_3(n6_3), gen_0':s4_3(n6_3)) → false, rt ∈ Ω(1 + n63)
Generator Equations:
gen_0':s4_3(0) ⇔ 0'
gen_0':s4_3(+(x, 1)) ⇔ s(gen_0':s4_3(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_3(n6_3), gen_0':s4_3(n6_3)) → false, rt ∈ Ω(1 + n63)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
cond1(
true,
x,
y) →
cond2(
gr(
x,
y),
x,
y)
cond2(
true,
x,
y) →
cond1(
gr0(
x),
y,
y)
cond2(
false,
x,
y) →
cond1(
gr0(
x),
p(
x),
y)
gr(
0',
x) →
falsegr(
s(
x),
0') →
truegr(
s(
x),
s(
y)) →
gr(
x,
y)
gr0(
0') →
falsegr0(
s(
x)) →
truep(
0') →
0'p(
s(
x)) →
xTypes:
cond1 :: true:false → 0':s → 0':s → cond1:cond2
true :: true:false
cond2 :: true:false → 0':s → 0':s → cond1:cond2
gr :: 0':s → 0':s → true:false
gr0 :: 0':s → true:false
false :: true:false
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_cond1:cond21_3 :: cond1:cond2
hole_true:false2_3 :: true:false
hole_0':s3_3 :: 0':s
gen_0':s4_3 :: Nat → 0':s
Lemmas:
gr(gen_0':s4_3(n6_3), gen_0':s4_3(n6_3)) → false, rt ∈ Ω(1 + n63)
Generator Equations:
gen_0':s4_3(0) ⇔ 0'
gen_0':s4_3(+(x, 1)) ⇔ s(gen_0':s4_3(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
gr(gen_0':s4_3(n6_3), gen_0':s4_3(n6_3)) → false, rt ∈ Ω(1 + n63)
(20) BOUNDS(n^1, INF)